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Abstract—In this work, we present lfbench: a micro-
benchmark suite intended as a one-stop shop representing all the
popular lock-free data structures. Lock-free programming is very
complex and so hard that there hasn’t been a generalized lock-
free algorithm designed; instead, lock-free data structures are
individually developed and optimized for the specific use-cases.
In spite of this difficulty, lock-free programs are indispensable;
OS kernel codes, popular databases, networking buffers, and so
forth, all rely on lock-free data structures for the performance
and scalability they provide. We attempt for the first time to bring
all the popular lock-free data structures under one roof, primarily
to enable development of new H/W semantics needed for easy
lock-free programming and help evaluate the same. Additionally,
the benchmark suite can be used for:

1) Performance analysis of any new S/W algorithms/ libraries
developed.

2) Building blocks for complex multi-threaded applications.

I. INTRODUCTION

Using locks to provide correct concurrent execution is
easier to reason when considering isolation, and hence it is a
more common practice. We can guard a critical section using
locks such that only one writer thread can execute at a time,
while other threads spin and wait for the release of the lock.
Despite this, writing performance efficient fine-grain locking
is hard and suffers from deadlocks, priority inversion and lack
of composability [1]. Lock-free programming, on the other
hand, lets all threads attempt the critical section concurrently:
each thread makes thread-local copies as it progresses, but
only one can publish this thread-local work to the shared
memory space, while others fail and re-try. This is achieved
by keeping the critical section inside an always-true while-
loop and exiting on a successful write using efficient H/W
atomics like compare-and-swap (CAS), fetch-and-add, etc.
Thus, Lock-free programming inherently avoids the above
listed problems owing to its “non-blocking” nature while it
enjoys disjoint-access parallelism, giving better performance
and scalability. To be called lock-free, a program needs to
avoid deadlocks and live-locks and provide a program wide
forward progress guarantee.

II. RELATED WORK

Lock-free programming is harder than lock-based program-
ming, because it inherently suffers from memory reclama-
tion problem and the ABA-problem [9]. It also requires
stronger H/W semantics like a multi-compare-multi-swap

Fig. 1. Example: B-tree removal

(MCMS), spanning multiple words to make linearizable up-
dates to the data structure getting modified. For exam-
ple, consider a B-tree shown in Fig. 1. Consider a writer
thread removing node-9. As shown in the figure, we need
at least a 4-way atomic CAS operation to do the removal
correctly: update node-14->left, node-10->left,
node-9->left and node-9->right. We need to update
node-9’s left and right pointers such that no concurrent
writer accidentally adds children to a node that is getting
removed. Additionally, once node-9 is detached from the
tree, we cannot delete this node and reclaim the memory
immediately, because we do not know if any other reader
threads are still referring to this node as the writer did not
have any exclusive rights to this node while it was removing
it.

In the absence of a H/W assisted multi-word CAS (MCAS),
lock-free programmers developed custom algorithms while
augmenting the base data structure with additional metadata
and inferring any updates through this metadata; e.g., for the
above B-tree, there is a map-table created that captures the
various incremental updates to the B-tree, consolidates these
lazily and updates using a single-CAS at a page granularity
[2]. A S/W based MCAS has been created by [1] and opti-
mized by several others [3], but these still suffer from heavy
complexity, non-trivial memory reclamation and indirection
to data access. Hardware transactional memory (HTMs) [10]
are a good alternative solution but lack of forward progress
in most commercial HTMs make them prone to live-locks



Fig. 2. Experimental results: Shows Throughput (in Million Operations/sec) scaling as thread count increases on an 8-core multi-threaded system

needing a lock-based fall-back path for forward progress.
HTMs also suffer from read/write set limitations, and they lack
debugging infrastructure, rendering them prone to performance
bugs. Recent work on H/W multi-word atomics [4] [5] comes
close to addressing some of these issues, but it is focused
on a H/W MCAS and evaluation of the design is only on a
subset of lock-free data structures. Their notable work on [8]
is complementary to our work, where they port traditionally
lock-based multi-threaded programs to lock-free style but still
rely on single-word atomics to ensure lock-freedom. Our work
is distinct for the following reasons:

1) We provide lock-free data structures in both S/W and
H/W using MCMS-like style to provide like-for-like
comparison of any new H/W semantics that are devel-
oped.

2) We use HTM not as a coarse-grain synchronization
semantic but as a building block for powerful multi-
word atomics.

3) Using our benchmark suite, we want to address all
the inherent problems in lock-free programming like
memory reclamation, enabling faster reads and building
a foundation for our future work that motivates not just
for an MCAS but a much stronger MCMS [7]. Key
difference in MCMS is that unlike in MCAS, we may
chose to write only to a subset of words that we read,
providing more potential for optimization at H/W level.

III. EXPERIMENTS

We used the ARM-TME model on gem5-v20 [11] for our
architectural exploration work but our benchmark suite is
H/W independent. This suite consists of the following data
structures and workloads:

• Stack: A LIFO stack is significant for its simplicity,
and is instrumental in comparing raw performance on
various semantics without having complexity of the data
structure. It has three variants: S/W based on single-
CAS, HTM based and C++ smart pointer based for safe

memory reclamation. In Fig. 2, we see that single-CAS
is the most efficient one, while HTM does not scale well
at higher thread count due to live-lock. Smart pointers
are inherently slow because they use lock-based version
counting to maintain portability across platforms.

• Deque: A doubly-ended queue represents an important
workload for OS kernel code and is a write-intensive
workload that adds and removes nodes from both ends.
We provide a 4-CAS based implementation using S/W
based MCAS from [1] and alternatively, use HTM-based
MCAS for the hardware assisted model. This is an
important workload that highlights again how the HTM
can tend to be stuck in live-lock under heavy contention.

• Ordered singly-linked list: We use a custom S/W thread-
cooperation based model from [6] as a base variant and
then compare it against a HTM-based model using a
Double-word CAS (DCAS). DCAS one shows a signif-
icant improvement we expect on avoiding lot of S/W
based indirection. This is a read-intensive workload.

• Skip-list: This builds on the previous ordered linked list
but significantly puts pressure on MCAS, as the height
(levels) of the skip-list increases. The S/W one uses
MCAS from [1] and scales better, even for higher levels
of the list. The HTM-based MCAS suffers as soon as
it starts experiencing cache capacity/associativity aborts,
highlighting another limitation of the HTM.

• B-tree: This is a custom MCAS based implementation of
the B-tree that uses an 8-way CAS at max but scales well
in both HTM and S/W based MCASes. We can get rid
of most of the complexity of the S/W based traversal in
the HTM-based one.

The suite can be accessed here: https://github.com/mahita649/
lfbench suite
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